Hyper-Sensitive States and Indirect Semantic Priming: Inferring The Mechanics of Psilocybin’s Novel Association Effect

Abstract of presentation:

The semantic network model, in its varied forms, serves as a metaphorical framework by which all we know of the world can be represented as a web or net of interrelated semantic concepts, each shown as a node. These conceptual nodes are activated into associative strands during the formation of a thought, and this activation leads to the semantic priming of those associated nodes. Primed nodes are, then recognized and accessed more readily in subsequent semantic cognitive tasks.

Latent inhibition (LI) is the perceptual filter which screens from conscious awareness the stimuli which previously has been experienced as irrelevant or inconsequential. A decrease, or lowering, of this LI capacity has been linked with schizophrenia and also with exceptionally high creative achievement scores amongst high-functioning individuals. It is believed that the highly creative individual, whose attentional state is uninhibited, may thereby have access to a larger inventory of indirectly primed concepts, which may then be linked into novel associative strands.

The semantic network model provides a powerful analogy with which to understand the nature of the attentional processes which act and interact in the composition of a thought. While the metaphoric nature of the semantic network, itself, has been argued, (Anderson (2000) claiming his ACT-R model as something closer to a neurological actuality), several studies (A. Pecchinenda, C. Ganteaume, & R. Bansestudies, 2008) have suggested that a subjective networking structure underlies the biological networking structure of neuronal interconnection in the brain, supporting the notion of spreading activation and semantic priming.

Throughout the presentation, I intend to explore what may be implied from the developed instrumentation and data of these and other studies and form an argument which seeks to describe the effects of psilocybin using the semantic network by expanding upon the cognitive mechanism of latent inhbition (LI) described by Carson (2003) and its correlatable research data. Key to relating the LI model to the activity of psilocybin on the semantic network is the indirect priming and schizophrenia research of Spitzer (1996, 1994). By interpreting semantic priming as a function of attention, the length of activational spread within the network can be seen as dependent on, not only the capacity of memory, but also the capacity of one’s attention span.


The Doors of Perception: A Cognitive Model

The latent inhibition (LI) paradigm was originally developed over 40 years ago (Lubow & Moore, 1959) to describe the capacity to filter out extraneous stimuli from conscious awareness. More simply, LI describes that common tendency to pay less attention to something the more we are exposed and become familiar to it. A review of the empirical studies of human subjects concluded the use of masking tasks is generally needed to produce positive results in adults. First adopted by Schnur and Ksir (1969), the masking task engages participants in activities which require the majority of their attention while, concurrently, presenting the to-be-associated stimuli in a subtle or indirect manner.

This inhibitory mechanism which controls the breadth of our awareness of the environment can be conceptualized as a sort of perceptual gate, barring the “irrelevant” stimuli from conscious attention while allowing the most immediate and novel of sensory data through, to be perceived.

A “Failure” To Ignore One’s Surroundings?

While the reduction of LI capacity had previously been linked to dysfunction in attentional processes, manifesting as symptoms of schizophrenia, attention deficit disorder, and psychosis, more recent research has suggested the hypersensitive state of lowered LI may, in fact, be associated with higher creative achievement and novel thought associations (Eysenck, 1995). It has been proposed that the cognitive processes employed by individuals with this heightened creative capacity are both quantitatively and qualitiatively different from those of the typical person (Simonton, 1999).

In the meta-analysis of her two studies of youthful subjects with high IQ, Carson (2003) found a highly significant relationship between reduced LI and creative achievement – with a nearly universal reduction of LI in the eminent creative achievers group.


“The highly creative individual may be privileged to access a greater inventory of unfiltered stimuli during early processing, thereby increasing the odds of original recombinant ideation. Thus, a deficit that is generally associated with pathology may well impart a creative advantage in the presence of other cognitive strengths, such as high IQ” (Carson, 2003, pg. 505).

Attention: Where Latent Inhibition and Semantic Activation Meet

A connectionist model bridging latent inhibition to semantic priming could be conceptually mediated by the attentional processes utilized by both paradigms. Changes in attentional processes have played a central role in understanding the cognitive underpinnings of schizophrenia since the time of Kraepelin and Bleuler. Attention has been used as an explanatory aid by Lubow (1995), who described it as an area ripe for LI research. Likewise, in his discussion of the hyper-priming state, Wentura (2008) suggests a link between disinhibited spreading of semantic activation and lowered LI. I propose this link may lie in the measure of covert attention. This may be framed as the hypothesis that a lowered LI score will result from the hypersensitive perceptual state of psilocybin, whose cognitive correlate has been shown as increased activation of indirect semantic associations by Spitzer (1996).

The word “priming” itself suggests fluid being carried via some channel or pipe, a fitting metaphor for semantic activation spreading from one node to another. Yet, in many ways, this metaphor serving to conceptualize semantic priming remains underdeveloped in that it gives no indication of what that “fluid” being primed is, its variations in pressure, or where it is being primed from. Once attention is introduced as an explanatory aid in an understanding of latent inhibition and semantic activation, the common ground shared by both models becomes highlighted and possible relationships can be drawn between them.

The Semantic Network: Consciousness Expansion as Spreading Activation

The semantic network model, in its varied forms, serves as a metaphorical framework by which all we know of the world can be represented as a net, or a branched hierarchy of interrelated semantic concepts, each shown as a node. These conceptual nodes are activated into associative strands during the formation of a thought, and this activation leads to the semantic priming of those associated nodes. Primed nodes are, then, recognized and accessed more readily in subsequent semantic tasks.

The administration of psilocybin, an agent known to affect the 5-HT system, induces a state of semantic hyper-priming in human subjects (Spitzer, 1996). This increased availability to typically-unavailable conceptual associations may help explain the reported subjective effects of “consciousness expansion” and “enhanced creativity” classically described by psilocybin users.

One conceptualization which may serve as an explanatory aid for the indirect priming effect of psilocybin on the semantic network is a fluent model of nodal branching. In other words, much like rivers which branch and divide, the spreading of activation can also be represented in terms of fluid flow through channels. In this view, psilocybin “floods” our semantic network, spreading outwards across “dry” conceptual branches, priming them with attention. Therein, the limits of expression of these expanded semantic associations may be defined by the limited capacity of an individual’s attention span.
States of hyper-sensitivity and hyper-priming can be seen resulting from both thought disordered (TD) schizophrenia and from psilocybin use. For this reason, theoretical models utilized in the investigation of perceptual or semantic processing abnormalities in schizotypy are also valuable tools to understand the influence of psychedelics, like psilocybin, on those same processes. The latent inhibition (LI) and semantic priming paradigms may be interrelated by the faculty of attention, thereby creating a framework for the cognitive processes underlying non-ordinary states of consciousness.


Carson, S. H., Peterson, J. B., & Higgins, D. M. (2003) Decreased latent inhibition is associated with increased creative achievement in high-functioning individuals. Journal of Personality and Social Psychology. 85, 499-506.

Eysenck, H.J. (1995). Creativity as a product of intelligence and personality. In D. Saklofske & M. Zeidner (Eds.), International Handbook of Personality and Intelligence: Perspectives on Individual Differences (pp. 231-247). New York: Plenum Press.

Lubow, R. E., & Moore, A. U. (1959). Latent inhibition: The effect of nonreinforced pre-exposure to the conditional stimulus. Journal of Comparative and Physiological Psychology. 52, 415-419.

Lubow, R. E. (1989). Latent Inhibition and Conditioned Attention Theory. Cambridge, England: Cambridge University Press.

Lubow, R. E., & Gewirtz, J. C. (1995). Latent inhibition in humans: Data, theory, and implications for schizophrenia. Psychological Bulletin. 117, 87-103.

Schnur, P., & Ksir, C. (1969). Latent inhibition in human eyelid conditioning. Journal of Experimental Psychology. 80, 388-389.

Spitzer, M., Thimm, M., Hermle, L., Holzmann, P., Kovar, K., Heimann, H., Gouzoulis-Mayfrank, E., Kischa, U., Schneider, F. (1996). Increased activation of indirect semantic associations under psilocybin. Biological Psychiatry. 39, 1055-1057.

Wentura, D., Moritz, S., & Frings, C. (2008). Further evidence for “hyper-priming” in thought-disordered schizophrenic patients using repeated masked category priming. Schizophrenia Research. 102, 69-75.

Biography of presenter:

A graduate student from the Institute of Transpersonal Psychology, Kaleb Smith is currently a research associate at Stanford University’s Psychophysiology Laboratory, assisting in the empirical study of emotional regulation. Concurrently, Smith is conducting consciousness research at ITP’s Neurophenomenology Laboratory and William James Center For Consciousness Studies. The former of these research studies concerns measuring the electroencephalographic influence of photic and binaural brainwave entrainment techniques. The latter investigates the perceptual anomalies of hypnagogic and shamanic trance states, an area of specialized interest for which he has published and presented perspectives on.

Previous research work in mental rotation as an assistant at the Cognitive Psychology laboratory of Northern Michigan University led to an early interest in the information-processing model and the potential applications of semantic networking theory.

My previous work as a group counselor at the Pine Rest behavior health center afforded me daily therapeutic interaction and empathic rapport with the substance abuse and schizophrenic patient populations – a learning experience which changed my life and did much to inform my current understanding of hyper-sensitivity, latent inhibition (LI), substance abuse treatment, and the associative novelty seen in psychedelic cognition.

Leave a Reply

Your email address will not be published. Required fields are marked *